SCALe-invariant Integral Surfaces

نویسندگان

  • Cedric Zanni
  • Adrien Bernhardt
  • M. Quiblier
  • Marie-Paule Cani
چکیده

2005 – 2007 2005 PhD in Computer Graphics: specialty mathematics-informatics Laboratoire Jean Kuntzmann / Inria Grenoble (team Imagine) , France Suject : Skeleton-based implicit modeling & Applications Thesis adviser: Marie-Paule Cani Comity members: Karan Singh (reviewer), Loïc Barthe (reviewer), Brian Wyvill, Evelyne Hubert, George-Pierre Bonneau Master 2 Research: Applied mathematics : with honors Université Joseph Fourier (UJF), France Ensimag engineer: with honors 3th year : Modeling, Imaging and Scientific computation Ecole Nationale Supérieure d'Informatique et de Mathématiques Appliquées de Grenoble (Ensimag) Math Sup/Math Spé : Classe Préparatoire aux grandes écoles, Lycée la Martinière Monplaisir (Lyon) Baccalauréat Scientific, math specialization, with honors in lycée de la Plaine de l'Ain

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate finite type invariant surfaces in Sol spaces

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Contour lines of the discrete scale-invariant rough surfaces.

We study the fractal properties of the two-dimensional (2D) discrete scale-invariant (DSI) rough surfaces. The contour lines of these rough surfaces show clear DSI. In the appropriate limit the DSI surfaces converge to the scale-invariant rough surfaces. The fractal properties of the 2D DSI rough surfaces apart from possessing the discrete scale-invariance property follow the properties of the ...

متن کامل

Almost - invariant surfaces for magnetic field - line flows

Two approaches to defining almost-invariant surfaces for magnetic-fields with imperfect magnetic surfaces are compared. Both methods are based on treating magnetic field-line flow as a 1 :-dimensional Hamiltonian (or Lagrangian) dynamical system. In the quadratic-flux minimizing surface approach. the integral of the square of the action gradient over the toroidal and poloidal angles is minimize...

متن کامل

ar X iv : h ep - t h / 96 06 07 1 v 1 1 2 Ju n 19 96 n - point functions of 2 d Yang - Mills theories on Riemann surfaces

Using the simple path integral method we calculate the n-point functions of field strength of Yang-Mills theories on arbitrary two-dimensional Riemann surfaces. In U (1) case we show that the correlators consist of two parts , a free and an x-independent part. In the case of non-abelian semisimple compact gauge groups we find the non-gauge invariant correlators in Schwinger-Fock gauge and show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013